Exercise 1
Create a database schema for a university Database.
AlIM :

The aim of this database schema is to store and manage information about students, professors, courses, and
enrollments at a university.

Procedures :

Step 1: Create Database

CREATE DATABASE SRMuUniversity;
Step 2: Use Database.
USE SRMUniversity;

Step 3: Create Tables of Departments, Students, Faculty, Courses, Classes, Enrollment, Attendance,
Grades.

CREATE TABLE Departments (department_id INT PRIMARY KEY ,department_name
VARCHAR(100) NOT NULL,building VARCHAR(100));

CREATE TABLE Students (student_id INT PRIMARY KEY, Name VARCHAR(50) NOT
NULL, dob DATE NOT NULL, phone_number VARCHAR(15), department_id INT,
FOREIGN KEY (department_id) REFERENCES Departments(department_id));

CREATE TABLE Faculty (faculty_id INT PRIMARY KEY,Name VARCHAR(50) NOT
NULL, phone_number VARCHAR(15),position VARCHAR(50),department_id
INT,FOREIGN KEY (department_id) REFERENCES Departments(department_id));

CREATE TABLE Courses (course_id INT PRIMARY KEY,course_name VARCHAR(100)
NOT NULL,credit_hours INT NOT NULL,department_id INT,FOREIGN KEY
(department_id) REFERENCES Departments(department_id));

CREATE TABLE Classes (class_id INT PRIMARY KEY,course_id INT NOT NULL,faculty id INT NOT
NULL,schedule VARCHAR(100),room_number VARCHAR(10),semester VARCHAR(10),year
YEAR,FOREIGN KEY

(course_id) REFERENCES Courses(course_id),FOREIGN KEY (faculty id) REFERENCES
Faculty(faculty_id));

CREATE TABLE Enrollment (enrollment_id INT PRIMARY KEY ,student_id INT NOT
NULL,class_id INT NOT NULL,enrollment_date DATE,FOREIGN KEY (student_id)
REFERENCES Students(student_id),FOREIGN KEY (class_id) REFERENCES
Classes(class_id));

CREATE TABLE Attendance (attendance_id INT PRIMARY KEY ,student_id INT NOT
NULL,class_id INT NOT NULL,attendance_date DATE NOT NULL,status ENUM('Present’,
'‘Absent’) NOT NULL,FOREIGN KEY (student_id) REFERENCES
Students(student_id),FOREIGN KEY (class_id) REFERENCES Classes(class_id));

CREATE TABLE Grades (grade_id INT PRIMARY KEY,student_id INT NOT NULL,class_id
INT NOT NULL,grade CHAR(1) CHECK (grade IN (‘A', ‘B, 'C", 'D', 'F")),FOREIGN KEY
(student_id) REFERENCES

Students(student_id),FOREIGN KEY (class_id) REFERENCES Classes(class_id));

Step 4: Inserting Values into Tables.

INSERT INTO Departments (department_id, department_name, building)VALUES
(1,'Computer Science', 'Engineering Block A"),(2,'Mathematics', 'Science Block B'),(3,'Physics’,
‘Science Block C");

INSERT INTO Students (student_id,Name, dob, phone_number,department_id)VALUES
(1,'abcd’, '2000-01-15'", '1234567890",
1),(2,'efghr’, '2001-08-10', '1122334455", 2),(3,"ijkI', '1999-05-20", '16534848", 3);

INSERT INTO Faculty (faculty _id,Name,phone_number, position, department_id)VALUES
(1,'Dr. xyz', '1234556", 'Professor’, 1),(2,'xzy','8765432109', 'Lecturer’, 2),(3,'wxy’, '7654321098',
'Professor’, 3);

INSERT INTO Courses (course_id,course_name, credit_hours, department_id)VALUES
(102,'Data Structures', 3, 1),(201,'Linear Algebra’, 4, 2),(211,'Quantum Mechanics', 3, 3);

INSERT INTO Classes (class_id,course_id, faculty_id, schedule, room_number, semester,
year)VALUES (1,102, 1, 'Monday 10:00 AM - 12:00 PM', 'Room 101/,

'Fall’, 2024),(2,201, 2, "Tuesday 2:00 PM - 4:00 PM', 'Room 202', 'Fall,

2024),(3,211, 3, 'Wednesday 9:00 AM - 11:00 AM', 'Room 303, 'Fall’, 2024);

INSERT INTO Enrollment (enrollment_id,student_id, class_id, enrollment_date)VALUES (1,1,
1, '2024-08-15",(2,2, 2, '2024-08-16"),(3,3, 3,
'2024-08-17");

INSERT INTO Attendance (attendance_id,student_id, class_id, attendance_date, status)VALUES (1,1, 1,
'2024-09-01', 'Present"),(2,2, 2, '2024-09-01",
'‘Absent),(3,3, 3, '2024-09-01', 'Present’);

INSERT INTO Grades (grade_id,student_id, class_id, grade)VALUES (1,1, 1, 'A"),(2,2, 2,
'B'),(3,3, 3! IAI);

Step 5: Display Tables. SELECT *
FROM Departments; SELECT *
FROM Students; SELECT * FROM
Faculty; SELECT * FROM Courses;
SELECT * FROM Classes; SELECT
* FROM Enrollment; SELECT *
FROM Attendance; SELECT *

FROM Grades;

OUTPUT

B MysaL Workbench - A X
B MySOLModeF fniverstymnb) x EER Diageml
Fle Edl Vew Auange Model Dalabsse Toos Sciptng Hep

BERcrigo D [leO3

Zoom: 100% » @ @ @ S
| limestamps
(7 ! student id INT o) BB ot b e e e e ﬂ‘ create_time, update_fime
G | Name YARCHAR(S0) » course_name YARCHAR(10... T user
*dob DATE credit_hours INT i' ————————— E‘ username, email, password, ..,
K1 | phone_number VARCHAR(... depatment JdINT | R
B *department_id INT . ; | "}"—J“ category_id, name
2 | 4 ‘
' il
Catalog Tree F ey | department [dINT
- = : department_name VARCHAR(10,..
vy - = ——IH{ " bulding VARGER(100)
alabbs & | z :
3 Vws |
B Routine Groups () | attendance JdINT |
»] universitymanagement | @ stdent_id 1T :
e lwd&s_id W | ! dlass i INT |
: P G T e
n {
Codg Loy Usm Types st EMON.) : ey J4INT Sl LT
Discrpbon Edilor 1 b 40 shedie YRCHAR100) oot Name VARCHAR(S0)
| s Table B Jtoom_uber VARCHAR(1...) enrlment 4 INT * phone_rumber YARCHARI .
= 1 4 N
. semester VARCHAR(10) 0 student_jd INT position ¥ ARCHAR(S0)
=)y YERR | s JAINT hELAD e
7 il S envolment dse 04, /
v
Descipton Propeties H4 % ¢ y Templates
Ready &l

RESULT:
Thus the queries are executed successfully and university database schema is created.

Exercise 2
Create employee database with key constraints
AlIM :

The aim of this database schema is to store and manage information about employees with key constraints
using SQL queries.

Procedures :

Step 1: Create Database

Create database empdb;
Step 2: Use Database.
use empdb;

Step 3: Create Tables of Departments and Employees

CREATE TABLE Departments (
DepartmentID INT PRIMARY KEY,
DepartmentName VARCHAR(100) NOT NULL UNIQUE
);
CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
FirstName VARCHAR(50) NOT NULL,
LastName VARCHAR(50) NOT NULL,
Email VARCHAR(100) NOT NULL UNIQUE,
Phone VARCHAR(15),
HireDate DATE NOT NULL,
Salary DECIMAL(10, 2),
DepartmentID INT,

CONSTRAINT fk_Department FOREIGN KEY (DepartmentlD) REFERENCES
Departments(DepartmentID)

STEP 4: Insert values into Department and Employees
INSERT INTO Departments (DepartmentID, DepartmentName)

VALUES
(1, 'HR"),
(2, 'Finance"),

(3,'1TY;

INSERT INTO Employees (EmployeelD, FirstName, LastName, Email, Phone, HireDate, Salary,
DepartmentID)

VALUES
(101, 'Alice’, "Johnson', ‘alice.johnson@example.com’, '555-1234', '2023-01-15', 60000, 1),
(102, 'Bob', 'Smith’, 'bob.smith@example.com’, '555-5678', '2022-06-01', 75000, 3),

(103, 'Charlie’, 'Brown’, ‘charlie.brown@example.com’, '555-8765', '2024-03-20', 50000, 2);

STEP 5: Display Tables
SELECT * FROM Employees;

SELECT * FROM Departments ;

STEP 6 : Alter Tables
UPDATE Employees

SET Salary = 80000

WHERE EmployeelD = 102;

UPDATE Employees

SET DepartmentID = 3

WHERE EmployeelD = 103;

OUTPUT

4

/5944 Create database empdb 1 row(s) aftected

03:02:38 USE empdb 0 rowls) affected

08:0302 use empdb 0 rowls) affected

08:04:18 use empdb 0 rowls) affected

08:0413 CREATE TABLE Departments { Department|D INT PRIMARY KEY, DepartmentName VARCHAR(100) NOT NU... 0 rowls) affected

08:0428 use empdb 0 rowis) affected

08:0428 CREATE TABLE Employees (EmployeelD INT PRIMARY KEY, FirstName VARCHAR(50) NOT NULL.... 0 rowls) affected

03:04:43 use empdb 0rowis) affected

08:0449 INSERT INTO Departmerts (DepartmentID, DepatmentName) VALUES (1, 'HR), (2. Finance), (3,'1T) 3 rowls) affected Records: 3 Duplicates: 0 Wamings: 0
03:05:01 use empdb 0 rowls) affected

08:0501 INSERT INTO Employees (Employee|D, FirstName, LastName, Email, Phone, HieDate, Salary, DepatmentID) VALU... 3 row(s) affected Recards: 3 Duplicates: 0 Wamings: 0
08:07:58 use empdb 0 rowis) affected

08:0758 SELECT * FROM Employees LIMIT 0. 1000 3 rowls) retumed

08:08:20 SELECT * FROM Departments LIMIT 0, 1000 3rowls) retumed

08:0820 SELECT * FROM Departments LIMIT 0, 1000 3 rowls) retumed

02:0307 use empdb 0rowis) affected

08:03.07 UPDATE Employees SET Salary = 80000 WHERE EmployeelD = 102 1 rowls) affected Rows matched: 1 Changed: 1 Wamings: 0
03:09.27 use empdb 0 rowls) affected

DepartmentID DepartmentMame

2 Finance
1 HR.
3 IT

HULL

£

| Result Grid | :m 4¥ Filter Rows: ||Edit: |‘|;'_@| By B |Expcurt,-r]mpart: ==

EmployeeID FirstName LastMame Email Phone HireDate
p 101 Alice Johnson glice.johnson@example.com 555-1234 2023-01-15
102 Bob Smith bob. smith@example.com 555-5673 2022-06-01
103 Charlie Brown charlie.brown@example.com 555-8765 2024-03-20

RESULT:
Thus the queries are executed successfully and employee database with key constraints
was created.

U.Ub3 sec
0.000 sec
0.000 sec
0.000 sec
0.140 sec
0.000 sec
0.281 sec
0.000 sec
0047 sec
0.000 sec
0.031sec
0.000 sec
0.000 sec / 0.000 s
0.015sec / 0.000s
0.000sec / 0.000s
0.000 sec
0047 sec
0.000'sec

Exercise 3
Create ER Model University Database
AlIM :
The aim is to create University database ER model using MY SQL workbench.

Procedures :

Step 1. Open MySQL Workbench
e Launch MySQL Workbench.

e Create a new model by selecting File > New Model.

e Click Add Diagram to create a new EER Diagram.

Step 2. Add Tables for Each Entity
e From the vertical toolbar, drag the Table icon into the canvas for each entity:

o Student
o Course
o Department
o Instructor
o Enrollment
o Classroom
o Schedule
Identify Entities and Their Attributes

Entity Attributes
Student StudentID (PK), FirstName, LastName, DateOfBirth, Email (Unique), EnrollmentDate
Course CourselD (PK), CourseName, Credits, DepartmentID (FK)
Department DepartmentlD (PK), DepartmentName

Instructor InstructorlD (PK), FirstName, LastName, Email (Unique), DepartmentID (FK)

Entity Attributes
Enrollment EnrolimentID (PK), StudentID (FK), CourselD (FK), EnrolimentDate, Grade
Classroom ClassroomlID (PK), Building, RoomNumber, Capacity

SchedulelD (PK), CourselD (FK), InstructorID (FK), ClassroomID (FK), DayOfWeek, StartTime,

Schedule .
EndTime

Step 3. Define Columns and Keys for Each Table
e Double-click each table to open the table editor.

e Add columns according to the attributes planned.
e For each table:

o Setthe primary key (PK) by checking the PK checkbox next to the relevant
attribute (e.g., StudentID).

o Set unique constraints for unique fields (e.g., Email in Student and Instructor).

Step 4. Create Foreign Key Relationships
e Still in the table editor, go to the Foreign Keys tab.

e Create foreign keys by linking attributes to the referenced table’s primary key.

o Example: In course, Set bepartmentID as a foreign key referencing
Department.DepartmentID.

o Similarly set foreign keys for Enrollment (StudentID, CourselD), Instructor
(DepartmentID), Schedule (CourselD, InstructorID, ClassroomiD).

Step 5. Use Relationship Tools to Connect Tables Visually
e Use the One-to-Many or Many-to-Many relationship tools from the toolbar to visually
link the tables.

e For many-to-many relationships (like Student-Course), ensure you use the associative
entity Enrollment.

DEFINE relationship
e Department has many Courses and many Instructors.
e Student enrolls in many Courses (via Enrollment).
e Course is taught by many Instructors (via Schedule).

e Course scheduled in a Classroom.

e Instructor belongs to one Department.

Step 6. Save and Export
e Save your model regularly (File > save).

e Export your diagram as an image or PDF using File > Export > Export as PNG/PDF
if you want to share or print the ER diagram.

_| department v
DepartmentID INT
 DepartmentName VARCHAR (100)
| 3
= ¥
—| schedule v [|
ScheduleID INT : e ol el e e I | enrollment ¥
& CourselD INT I ;k Enrollm entID INT
 InstructorID INT T T T I '
nstructor, I i j TEOED v “# StudentID INT
i
ClassroomID INT : I CourselD INT r CourselD INT
!
DayCfiveek VARCHAR(10) INEESEENEES 1I -:- Courseam e V ARCHAR(100) } Enrollm entD ate DATE
- ————— —
StarfTime TIME | 0 s Credits INT Grade CHAR(2)
f T | 3
EndTim e TIME | : > DepartmentlD INT
> |
>
P T
+ | ' [
[| ' [
[| ' [
/ I ' [
I | ! I
| | ' 4
$:: A u] _| student v
" classroom v | instructor v StudentD INT
ClassroomID INT InstructorD INT Firsthiame Y ARCHAR(50)
Building VARCHAR(50) ¢ Firsthiame VARCHAR(30) ’ LastName VARCHAR(50)
RoomNum ber ¥ AR.CHAR(20) # Lastiame YARCHAR(50) DateOfgirth DATE
Capacity INT » Email VARCHAR(100) > Email VARCHAR(100)
> ? DepartmentD INT > Enralim entDate DATE
> >
m O u]

RESULT:

Thus ER model for University database is created successfully using MY SQL workbench.

Exercise 4
Implementing DDL and DML Commands
AlIM :

To understand and implement Data Definition Language (DDL) and Data Manipulation
Language (DML) commands using SQL.

Procedures :

DDL (Data Definition Language)

Commands used to define and modify database structure.

Examples:
e CREATE
e ALTER
« DROP
« TRUNCATE

DML (Data Manipulation Language):

Commands used to manipulate data in tables.

Examples:
e INSERT
« UPDATE
o DELETE

A. DDL Commands (Data Definition Language)

Step 1: Create a Table

Create a table named students with fields for student details.

CREATE TABLE Students (
StudentID INT PRIMARY KEY,
Name VARCHAR (50),

Age INT,
Department VARCHAR (30)

) ;

Step 2: Alter the Table

Add a new column Email to the students table.

ALTER TABLE Students

ADD Email VARCHAR (50);

Step 3: Truncate the Table

Remove all records from the students table, keeping its structure.

TRUNCATE TABLE Students;

Step 4: Drop the Table

Permanently delete the students table from the database.
DROP TABLE Students;
B. DML Commands (Data Manipulation Language)

Step 5: Insert Data into the Table

Insert a record for a student into the students table.

INSERT INTO Students (StudentID, Name, Age, Department,
VALUES (1, 'John Doe', 20, 'CSE', 'john@example.com');

Step 6: Retrieve Data from the Table

Display all records from the students table.

SELECT * FROM Students;

Step 7: Update a Record

Update the email address of the student with studentIp = 1.

UPDATE Students
SET Email = 'john.doe@college.com'
WHERE StudentID = 1;

Step 8: Delete a Record

Delete the record of the student with studentID = 1.

DELETE FROM Students
WHERE StudentID = 1;

OUTPUT:

Email)

Status : Successfully executed

RESULT:
Thus the SQL commands for managing database schema (DDL) and manipulating
records (DML) are executed successfully.

Exercise 5
Implement DCL, TCL Commands
AlIM :

To understand and implement DCL and TCL commands using SQL for managing access
permissions and transactions using SQL.

Procedures :

DCL - Data Control Language

Used to control access to data in a database.
Common commands:

e GRANT — gives privileges to users
e REVOKE — removes privileges from users

TCL - Transaction Control Language

Used to manage transactions in a database.
Common commands:

e CoOMMIT — Saves the transaction permanently
e ROLLBACK — Undoes changes since the last COMMIT
e SAVEPOINT — creates a point within a transaction for partial rollbacks
A. DCL Commands
Step 1: Create a User (syntax may vary depending on RDBMS)
CREATE USER 'studentl'@'localhost' IDENTIFIED BY 'passwordl23';
Step 2: Grant Privileges
Grant permissions to the user to access a specific table.
GRANT SELECT, INSERT, UPDATE ON empdb.Employees TO 'studentl'@'localhost';

Step 3: Revoke Privileges

Revoke the granted permissions.

REVOKE INSERT, UPDATE ON empdb.Employees FROM 'studentl'@'localhost';

B. TCL Commands

Step 4: Start a Transaction (optional depending on system)

START TRANSACTION;

Step 5: Insert Data into a Table

Insert a new employee (example assumes Employees table exists).

INSERT INTO Employees (EmployeeID, FirstName, LastName, Email, Phone,
HireDate, Salary, DepartmentID)

VALUES (104, 'David', 'Lee', 'david.lee(@example.com', '555-1111"', '2025-08-
03', 62000, 2);

Step 6: Create a Savepoint
Create a rollback point.
SAVEPOINT spl;

Step 7: Update a Record

Update the inserted employee’s salary.

UPDATE Employees
SET Salary = 65000
WHERE EmployeeID = 104;

Step 8: Rollback to Savepoint

Undo the salary update, but keep the insert.

ROLLBACK TO spl;

Step 9: Commit the Transaction
Make all changes permanent.
COMMIT;

Step 10: Full Rollback Example

If no commtT is done, you can rollback all changes:

ROLLBACK;

OUTPUT:

Status : Successfully executed

RESULT:
Thus, DCL and TCL commands were executed successfully for managing database

security and transaction control.

Exercise 6
Implement SQL sub queries, Joins and Clauses
AlIM :

To implement SQL subqueries, various types of joins, and commonly used clauses for
effective data retrieval and management.

Procedures :

Subqueries:

A subquery is a query nested inside another query.
Types:

e Single-row subquery
e Multi-row subquery
o Correlated subquery

Joins:

Used to retrieve data from multiple tables based on a related column.
Types:

° INNER JOIN

e 1EFT JOIN (Or LEFT OUTER JOIN)

e RIGHT JoIN (Oor RIGHT OUTER JOIN)

e FULL JOIN (may not be supported in all DBMSS)
. SELF JOIN

Clauses:

SQL clauses filter, sort, and group query results. Common clauses include:

e WHERE

e (GROUP BY
e HAVING

e ORDER BY
e LIMIT

Tables for Practice:

Departments

CREATE TABLE Departments (
DepartmentID INT PRIMARY KEY,
DepartmentName VARCHAR (100)

)i
Employees

CREATE TABLE Employees (
EmployeeID INT PRIMARY KEY,
FirstName VARCHAR (50),
LastName VARCHAR(50),
Salary DECIMAL (10, 2),
DepartmentID INT,
FOREIGN KEY (DepartmentID) REFERENCES Departments (DepartmentID)

INSERT INTO Departments

INSERT INTO Departments (DepartmentID, DepartmentName)

VALUES
(1, 'HR"),
(2, 'Finance'),
(3, "IT'"),
(4, 'Marketing');

INSERT INTO Employees

INSERT INTO Employees (EmployeeID, FirstName, LastName, Salary, DepartmentID)
VALUES

101, 'Alice', 'Johnson', 55000.00, 1),

102, 'Bob', 'Smith', 72000.00, 3),

103, 'Charlie', 'Brown', 48000.00, 2),

104, 'David', 'Lee', 65000.00, 3),

105, 'Eva', 'Green', 51000.00, 4),

(
(
(
(
(
(106, 'Frank', 'Miller', 75000.00, 2);

A. Subqueries
Step 1: Subquery in weere clause

Get employees earning more than the average salary.

SELECT * FROM Employees
WHERE Salary > (SELECT AVG(Salary) FROM Employees) ;

Step 2: Subquery in rrom clause

Get department-wise average salary using a subquery.

SELECT DepartmentID, AvgSalary
FROM (SELECT DepartmentID, AVG(Salary) AS AvgSalary FROM Employees GROUP BY
DepartmentID) AS DeptAvg;

B. Joins
Step 3: INNER JOIN

Get employee details with their department names.

SELECT e.EmployeelID, e.FirstName, e.LastName, d.DepartmentName
FROM Employees e
INNER JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 4: LEFT JOIN

Show all employees and their departments, even if the department is NULL.

SELECT e.EmployeelD, e.FirstName, d.DepartmentName
FROM Employees e
LEFT JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 5: RIGHT JOIN

Show all departments and employees, even if no employees are in a department.

SELECT e.EmployeelID, e.FirstName, d.DepartmentName
FROM Employees e
RIGHT JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 6: SELF JOIN

Find pairs of employees from the same department.

SELECT el.FirstName AS Empl, e2.FirstName AS Emp2, el.DepartmentID

FROM Employees el

JOIN Employees e2 ON el.DepartmentID = e2.DepartmentID AND el.EmployeeID <>
e2.EmployeelD;

C. SQL Clauses
Step 7: WHERE Clause

Get employees from the IT department.

SELECT * FROM Employees
WHERE DepartmentID = 3;

Step 8: GROUP BY Clause

Find total salary paid in each department.

SELECT DepartmentID, SUM(Salary) AS TotalSalary
FROM Employees
GROUP BY DepartmentID;

Step 9: HAVING Clause

Departments where total salary exceeds 1,00,000.

SELECT DepartmentID, SUM(Salary) AS TotalSalary
FROM Employees

GROUP BY DepartmentID

HAVING SUM(Salary) > 100000;

Step 10: ORDER BY Clause

Display all employees in descending order of salary.

SELECT * FROM Employees
ORDER BY Salary DESC;

Step 11: LIMIT Clause (MySQL)

Fetch top 3 highest paid employees.

SELECT * FROM Employees
ORDER BY Salary DESC
LIMIT 3;

OUTPUT:

Status : Successfully executed

RESULT:
Thus, SQL subqueries, joins, and clauses were implemented successfully using structured

SQL queries.

Exercise 4
Implementing DDL and DML Commands
AlIM :

To understand and implement Data Definition Language (DDL) and Data Manipulation
Language (DML) commands using SQL.

Procedures :

DDL (Data Definition Language)

Commands used to define and modify database structure.

Examples:
e CREATE
e ALTER
« DROP
« TRUNCATE

DML (Data Manipulation Language):

Commands used to manipulate data in tables.

Examples:
e INSERT
« UPDATE
o DELETE

A. DDL Commands (Data Definition Language)

Step 1: Create a Table

Create a table named students with fields for student details.

CREATE TABLE Students (
StudentID INT PRIMARY KEY,
Name VARCHAR (50),

Age INT,
Department VARCHAR (30)

) ;

Step 2: Alter the Table

Add a new column Email to the students table.

ALTER TABLE Students

ADD Email VARCHAR (50);

Step 3: Truncate the Table

Remove all records from the students table, keeping its structure.

TRUNCATE TABLE Students;

Step 4: Drop the Table

Permanently delete the students table from the database.
DROP TABLE Students;
B. DML Commands (Data Manipulation Language)

Step 5: Insert Data into the Table

Insert a record for a student into the students table.

INSERT INTO Students (StudentID, Name, Age, Department,
VALUES (1, 'John Doe', 20, 'CSE', 'john@example.com');

Step 6: Retrieve Data from the Table

Display all records from the students table.

SELECT * FROM Students;

Step 7: Update a Record

Update the email address of the student with studentIp = 1.

UPDATE Students
SET Email = 'john.doe@college.com'
WHERE StudentID = 1;

Step 8: Delete a Record

Delete the record of the student with studentID = 1.

DELETE FROM Students
WHERE StudentID = 1;

OUTPUT:

Email)

Status : Successfully executed

RESULT:
Thus the SQL commands for managing database schema (DDL) and manipulating
records (DML) are executed successfully.

Exercise 5
Implement DCL, TCL Commands
AlIM :

To understand and implement DCL and TCL commands using SQL for managing access
permissions and transactions using SQL.

Procedures :

DCL - Data Control Language

Used to control access to data in a database.
Common commands:

e GRANT — gives privileges to users
e REVOKE — removes privileges from users

TCL - Transaction Control Language

Used to manage transactions in a database.
Common commands:

e CoOMMIT — Saves the transaction permanently
e ROLLBACK — Undoes changes since the last COMMIT
e SAVEPOINT — creates a point within a transaction for partial rollbacks
A. DCL Commands
Step 1: Create a User (syntax may vary depending on RDBMS)
CREATE USER 'studentl'@'localhost' IDENTIFIED BY 'passwordl23';
Step 2: Grant Privileges
Grant permissions to the user to access a specific table.
GRANT SELECT, INSERT, UPDATE ON empdb.Employees TO 'studentl'@'localhost';

Step 3: Revoke Privileges

Revoke the granted permissions.

REVOKE INSERT, UPDATE ON empdb.Employees FROM 'studentl'@'localhost';

B. TCL Commands

Step 4: Start a Transaction (optional depending on system)

START TRANSACTION;

Step 5: Insert Data into a Table

Insert a new employee (example assumes Employees table exists).

INSERT INTO Employees (EmployeeID, FirstName, LastName, Email, Phone,
HireDate, Salary, DepartmentID)

VALUES (104, 'David', 'Lee', 'david.lee(@example.com', '555-1111"', '2025-08-
03', 62000, 2);

Step 6: Create a Savepoint
Create a rollback point.
SAVEPOINT spl;

Step 7: Update a Record

Update the inserted employee’s salary.

UPDATE Employees
SET Salary = 65000
WHERE EmployeeID = 104;

Step 8: Rollback to Savepoint

Undo the salary update, but keep the insert.

ROLLBACK TO spl;

Step 9: Commit the Transaction
Make all changes permanent.
COMMIT;

Step 10: Full Rollback Example

If no commtT is done, you can rollback all changes:

ROLLBACK;

OUTPUT:

Status : Successfully executed

RESULT:
Thus, DCL and TCL commands were executed successfully for managing database

security and transaction control.

Exercise 6
Implement SQL sub queries, Joins and Clauses
AlIM :

To implement SQL subqueries, various types of joins, and commonly used clauses for
effective data retrieval and management.

Procedures :

Subqueries:

A subquery is a query nested inside another query.
Types:

e Single-row subquery
e Multi-row subquery
o Correlated subquery

Joins:

Used to retrieve data from multiple tables based on a related column.
Types:

° INNER JOIN

e 1EFT JOIN (Or LEFT OUTER JOIN)

e RIGHT JoIN (Oor RIGHT OUTER JOIN)

e FULL JOIN (may not be supported in all DBMSS)
. SELF JOIN

Clauses:

SQL clauses filter, sort, and group query results. Common clauses include:

e WHERE

e (GROUP BY
e HAVING

e ORDER BY
e LIMIT

Tables for Practice:

Departments

CREATE TABLE Departments (
DepartmentID INT PRIMARY KEY,
DepartmentName VARCHAR (100)

)i
Employees

CREATE TABLE Employees (
EmployeeID INT PRIMARY KEY,
FirstName VARCHAR (50),
LastName VARCHAR(50),
Salary DECIMAL (10, 2),
DepartmentID INT,
FOREIGN KEY (DepartmentID) REFERENCES Departments (DepartmentID)

INSERT INTO Departments

INSERT INTO Departments (DepartmentID, DepartmentName)

VALUES
(1, 'HR"),
(2, 'Finance'),
(3, "IT'"),
(4, 'Marketing');

INSERT INTO Employees

INSERT INTO Employees (EmployeeID, FirstName, LastName, Salary, DepartmentID)
VALUES

101, 'Alice', 'Johnson', 55000.00, 1),

102, 'Bob', 'Smith', 72000.00, 3),

103, 'Charlie', 'Brown', 48000.00, 2),

104, 'David', 'Lee', 65000.00, 3),

105, 'Eva', 'Green', 51000.00, 4),

(
(
(
(
(
(106, 'Frank', 'Miller', 75000.00, 2);

A. Subqueries
Step 1: Subquery in weere clause

Get employees earning more than the average salary.

SELECT * FROM Employees
WHERE Salary > (SELECT AVG(Salary) FROM Employees) ;

Step 2: Subquery in rrom clause

Get department-wise average salary using a subquery.

SELECT DepartmentID, AvgSalary
FROM (SELECT DepartmentID, AVG(Salary) AS AvgSalary FROM Employees GROUP BY
DepartmentID) AS DeptAvg;

B. Joins
Step 3: INNER JOIN

Get employee details with their department names.

SELECT e.EmployeelID, e.FirstName, e.LastName, d.DepartmentName
FROM Employees e
INNER JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 4: LEFT JOIN

Show all employees and their departments, even if the department is NULL.

SELECT e.EmployeelD, e.FirstName, d.DepartmentName
FROM Employees e
LEFT JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 5: RIGHT JOIN

Show all departments and employees, even if no employees are in a department.

SELECT e.EmployeelID, e.FirstName, d.DepartmentName
FROM Employees e
RIGHT JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 6: SELF JOIN

Find pairs of employees from the same department.

SELECT el.FirstName AS Empl, e2.FirstName AS Emp2, el.DepartmentID

FROM Employees el

JOIN Employees e2 ON el.DepartmentID = e2.DepartmentID AND el.EmployeeID <>
e2.EmployeelD;

C. SQL Clauses
Step 7: WHERE Clause

Get employees from the IT department.

SELECT * FROM Employees
WHERE DepartmentID = 3;

Step 8: GROUP BY Clause

Find total salary paid in each department.

SELECT DepartmentID, SUM(Salary) AS TotalSalary
FROM Employees
GROUP BY DepartmentID;

Step 9: HAVING Clause

Departments where total salary exceeds 1,00,000.

SELECT DepartmentID, SUM(Salary) AS TotalSalary
FROM Employees

GROUP BY DepartmentID

HAVING SUM(Salary) > 100000;

Step 10: ORDER BY Clause

Display all employees in descending order of salary.

SELECT * FROM Employees
ORDER BY Salary DESC;

Step 11: LIMIT Clause (MySQL)

Fetch top 3 highest paid employees.

SELECT * FROM Employees
ORDER BY Salary DESC
LIMIT 3;

OUTPUT:

Status : Successfully executed

RESULT:
Thus, SQL subqueries, joins, and clauses were implemented successfully using structured

SQL queries.

	Exercise 1
	Create a database schema for a university Database.
	AIM :
	The aim of this database schema is to store and manage information about students, professors, courses, and enrollments at a university.
	Procedures :
	Step 2: Use Database.
	Step 3: Create Tables of Departments, Students, Faculty, Courses, Classes, Enrollment, Attendance, Grades.
	Step 4: Inserting Values into Tables.
	Exercise 2
	Create employee database with key constraints
	AIM : (1)
	The aim of this database schema is to store and manage information about employees with key constraints using SQL queries.
	Procedures : (1)
	Step 2: Use Database. (1)
	Step 3: Create Tables of Departments and Employees
	STEP 4: Insert values into Department and Employees
	STEP 5: Display Tables
	STEP 6 : Alter Tables
	Exercise 3
	Create ER Model University Database
	AIM : (2)
	The aim is to create University database ER model using MYSQL workbench.
	Procedures : (2)
	Step 1. Open MySQL Workbench
	Step 2. Add Tables for Each Entity
	Step 3. Define Columns and Keys for Each Table
	Step 4. Create Foreign Key Relationships
	Step 5. Use Relationship Tools to Connect Tables Visually
	Step 6. Save and Export
	Thus ER model for University database is created successfully using MYSQL workbench.
	Step 1: Create a Table
	Step 2: Alter the Table
	Step 3: Truncate the Table
	Step 4: Drop the Table
	Step 5: Insert Data into the Table
	Step 6: Retrieve Data from the Table
	Step 7: Update a Record
	Step 8: Delete a Record
	Step 1: Create a User (syntax may vary depending on RDBMS)
	Step 2: Grant Privileges
	Step 3: Revoke Privileges
	Step 4: Start a Transaction (optional depending on system)
	Step 5: Insert Data into a Table
	Step 6: Create a Savepoint
	Step 7: Update a Record (1)
	Step 8: Rollback to Savepoint
	Step 9: Commit the Transaction
	Step 10: Full Rollback Example
	Subqueries:
	Clauses:
	Tables for Practice:
	Step 1: Subquery in WHERE clause
	Step 2: Subquery in FROM clause
	Step 3: INNER JOIN
	Step 4: LEFT JOIN
	Step 5: RIGHT JOIN
	Step 6: SELF JOIN
	Step 7: WHERE Clause
	Step 8: GROUP BY Clause
	Step 9: HAVING Clause
	Step 10: ORDER BY Clause
	Step 11: LIMIT Clause (MySQL)
	Step 1: Create a Table
	Step 2: Alter the Table
	Step 3: Truncate the Table
	Step 4: Drop the Table
	Step 5: Insert Data into the Table
	Step 6: Retrieve Data from the Table
	Step 7: Update a Record
	Step 8: Delete a Record
	Step 1: Create a User (syntax may vary depending on RDBMS)
	Step 2: Grant Privileges
	Step 3: Revoke Privileges
	Step 4: Start a Transaction (optional depending on system)
	Step 5: Insert Data into a Table
	Step 6: Create a Savepoint
	Step 7: Update a Record (1)
	Step 8: Rollback to Savepoint
	Step 9: Commit the Transaction
	Step 10: Full Rollback Example
	Subqueries:
	Clauses:
	Tables for Practice:
	Step 1: Subquery in WHERE clause
	Step 2: Subquery in FROM clause
	Step 3: INNER JOIN
	Step 4: LEFT JOIN
	Step 5: RIGHT JOIN
	Step 6: SELF JOIN
	Step 7: WHERE Clause
	Step 8: GROUP BY Clause
	Step 9: HAVING Clause
	Step 10: ORDER BY Clause
	Step 11: LIMIT Clause (MySQL)

