
Exercise 1

Create a database schema for a university Database.

AIM :

The aim of this database schema is to store and manage information about students, professors, courses, and

enrollments at a university.

Procedures :

Step 1: Create Database

CREATE DATABASE SRMUniversity;

Step 2: Use Database.

USE SRMUniversity;

Step 3: Create Tables of Departments, Students, Faculty, Courses, Classes, Enrollment, Attendance,

Grades.

CREATE TABLE Departments (department_id INT PRIMARY KEY,department_name

VARCHAR(100) NOT NULL,building VARCHAR(100));

CREATE TABLE Students (student_id INT PRIMARY KEY, Name VARCHAR(50) NOT

NULL, dob DATE NOT NULL, phone_number VARCHAR(15), department_id INT,

FOREIGN KEY (department_id) REFERENCES Departments(department_id));

CREATE TABLE Faculty (faculty_id INT PRIMARY KEY,Name VARCHAR(50) NOT

NULL, phone_number VARCHAR(15),position VARCHAR(50),department_id

INT,FOREIGN KEY (department_id) REFERENCES Departments(department_id));

CREATE TABLE Courses (course_id INT PRIMARY KEY,course_name VARCHAR(100)

NOT NULL,credit_hours INT NOT NULL,department_id INT,FOREIGN KEY

(department_id) REFERENCES Departments(department_id));

CREATE TABLE Classes (class_id INT PRIMARY KEY,course_id INT NOT NULL,faculty_id INT NOT

NULL,schedule VARCHAR(100),room_number VARCHAR(10),semester VARCHAR(10),year

YEAR,FOREIGN KEY

(course_id) REFERENCES Courses(course_id),FOREIGN KEY (faculty_id) REFERENCES

Faculty(faculty_id));

CREATE TABLE Enrollment (enrollment_id INT PRIMARY KEY,student_id INT NOT

NULL,class_id INT NOT NULL,enrollment_date DATE,FOREIGN KEY (student_id)

REFERENCES Students(student_id),FOREIGN KEY (class_id) REFERENCES

Classes(class_id));

CREATE TABLE Attendance (attendance_id INT PRIMARY KEY,student_id INT NOT

NULL,class_id INT NOT NULL,attendance_date DATE NOT NULL,status ENUM('Present',

'Absent') NOT NULL,FOREIGN KEY (student_id) REFERENCES

Students(student_id),FOREIGN KEY (class_id) REFERENCES Classes(class_id));

CREATE TABLE Grades (grade_id INT PRIMARY KEY,student_id INT NOT NULL,class_id

INT NOT NULL,grade CHAR(1) CHECK (grade IN ('A', 'B', 'C', 'D', 'F')),FOREIGN KEY

(student_id) REFERENCES

Students(student_id),FOREIGN KEY (class_id) REFERENCES Classes(class_id));

Step 4: Inserting Values into Tables.

INSERT INTO Departments (department_id, department_name, building)VALUES

(1,'Computer Science', 'Engineering Block A'),(2,'Mathematics', 'Science Block B'),(3,'Physics',

'Science Block C');

INSERT INTO Students (student_id,Name, dob, phone_number,department_id)VALUES

(1,'abcd', '2000-01-15', '1234567890',

1),(2,'efghr', '2001-08-10', '1122334455', 2),(3,'ijkl', '1999-05-20', '16534848', 3);

INSERT INTO Faculty (faculty_id,Name,phone_number, position, department_id)VALUES

(1,'Dr. xyz', '1234556', 'Professor', 1),(2,'xzy','8765432109', 'Lecturer', 2),(3,'wxy', '7654321098',

'Professor', 3);

INSERT INTO Courses (course_id,course_name, credit_hours, department_id)VALUES

(102,'Data Structures', 3, 1),(201,'Linear Algebra', 4, 2),(211,'Quantum Mechanics', 3, 3);

INSERT INTO Classes (class_id,course_id, faculty_id, schedule, room_number, semester,

year)VALUES (1,102, 1, 'Monday 10:00 AM - 12:00 PM', 'Room 101',

'Fall', 2024),(2,201, 2, 'Tuesday 2:00 PM - 4:00 PM', 'Room 202', 'Fall',

2024),(3,211, 3, 'Wednesday 9:00 AM - 11:00 AM', 'Room 303', 'Fall', 2024);

INSERT INTO Enrollment (enrollment_id,student_id, class_id, enrollment_date)VALUES (1,1,

1, '2024-08-15'),(2,2, 2, '2024-08-16'),(3,3, 3,

'2024-08-17');

INSERT INTO Attendance (attendance_id,student_id, class_id, attendance_date, status)VALUES (1,1, 1,

'2024-09-01', 'Present'),(2,2, 2, '2024-09-01',

'Absent'),(3,3, 3, '2024-09-01', 'Present');

INSERT INTO Grades (grade_id,student_id, class_id, grade)VALUES (1,1, 1, 'A'),(2,2, 2,

'B'),(3,3, 3, 'A');

Step 5: Display Tables. SELECT *

FROM Departments; SELECT *

FROM Students; SELECT * FROM

Faculty; SELECT * FROM Courses;

SELECT * FROM Classes; SELECT

* FROM Enrollment; SELECT *

FROM Attendance; SELECT *

FROM Grades;

OUTPUT

RESULT:

 Thus the queries are executed successfully and university database schema is created.

Exercise 2

Create employee database with key constraints

AIM :

The aim of this database schema is to store and manage information about employees with key constraints

using SQL queries.

Procedures :

Step 1: Create Database

 Create database empdb;

Step 2: Use Database.

 use empdb;

Step 3: Create Tables of Departments and Employees

CREATE TABLE Departments (

 DepartmentID INT PRIMARY KEY,

 DepartmentName VARCHAR(100) NOT NULL UNIQUE

);

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50) NOT NULL,

 LastName VARCHAR(50) NOT NULL,

 Email VARCHAR(100) NOT NULL UNIQUE,

 Phone VARCHAR(15),

 HireDate DATE NOT NULL,

 Salary DECIMAL(10, 2),

 DepartmentID INT,

 CONSTRAINT fk_Department FOREIGN KEY (DepartmentID) REFERENCES

Departments(DepartmentID)

);

STEP 4: Insert values into Department and Employees

INSERT INTO Departments (DepartmentID, DepartmentName)

VALUES

 (1, 'HR'),

 (2, 'Finance'),

 (3, 'IT');

INSERT INTO Employees (EmployeeID, FirstName, LastName, Email, Phone, HireDate, Salary,

DepartmentID)

VALUES

 (101, 'Alice', 'Johnson', 'alice.johnson@example.com', '555-1234', '2023-01-15', 60000, 1),

 (102, 'Bob', 'Smith', 'bob.smith@example.com', '555-5678', '2022-06-01', 75000, 3),

 (103, 'Charlie', 'Brown', 'charlie.brown@example.com', '555-8765', '2024-03-20', 50000, 2);

STEP 5: Display Tables

SELECT * FROM Employees;

SELECT * FROM Departments ;

STEP 6 : Alter Tables

UPDATE Employees

SET Salary = 80000

WHERE EmployeeID = 102;

UPDATE Employees

SET DepartmentID = 3

WHERE EmployeeID = 103;

OUTPUT

RESULT:

Thus the queries are executed successfully and employee database with key constraints

was created.

Exercise 3

Create ER Model University Database

AIM :

The aim is to create University database ER model using MYSQL workbench.

Procedures :

Step 1. Open MySQL Workbench

● Launch MySQL Workbench.

● Create a new model by selecting File > New Model.

● Click Add Diagram to create a new EER Diagram.

Step 2. Add Tables for Each Entity

● From the vertical toolbar, drag the Table icon into the canvas for each entity:

o Student

o Course

o Department

o Instructor

o Enrollment

o Classroom

o Schedule

Identify Entities and Their Attributes

Entity Attributes

Student StudentID (PK), FirstName, LastName, DateOfBirth, Email (Unique), EnrollmentDate

Course CourseID (PK), CourseName, Credits, DepartmentID (FK)

Department DepartmentID (PK), DepartmentName

Instructor InstructorID (PK), FirstName, LastName, Email (Unique), DepartmentID (FK)

Entity Attributes

Enrollment EnrollmentID (PK), StudentID (FK), CourseID (FK), EnrollmentDate, Grade

Classroom ClassroomID (PK), Building, RoomNumber, Capacity

Schedule
ScheduleID (PK), CourseID (FK), InstructorID (FK), ClassroomID (FK), DayOfWeek, StartTime,

EndTime

Step 3. Define Columns and Keys for Each Table

● Double-click each table to open the table editor.

● Add columns according to the attributes planned.

● For each table:

o Set the primary key (PK) by checking the PK checkbox next to the relevant

attribute (e.g., StudentID).

o Set unique constraints for unique fields (e.g., Email in Student and Instructor).

Step 4. Create Foreign Key Relationships

● Still in the table editor, go to the Foreign Keys tab.

● Create foreign keys by linking attributes to the referenced table’s primary key.

o Example: In Course, set DepartmentID as a foreign key referencing

Department.DepartmentID.

o Similarly set foreign keys for Enrollment (StudentID, CourseID), Instructor

(DepartmentID), Schedule (CourseID, InstructorID, ClassroomID).

Step 5. Use Relationship Tools to Connect Tables Visually

● Use the One-to-Many or Many-to-Many relationship tools from the toolbar to visually

link the tables.

● For many-to-many relationships (like Student-Course), ensure you use the associative

entity Enrollment.

DEFINE relationship

● Department has many Courses and many Instructors.

● Student enrolls in many Courses (via Enrollment).

● Course is taught by many Instructors (via Schedule).

● Course scheduled in a Classroom.

● Instructor belongs to one Department.

Step 6. Save and Export

● Save your model regularly (File > Save).

● Export your diagram as an image or PDF using File > Export > Export as PNG/PDF

if you want to share or print the ER diagram.

OUTPUT

RESULT:

 Thus ER model for University database is created successfully using MYSQL workbench.

.

Exercise 4

Implementing DDL and DML Commands

AIM :

To understand and implement Data Definition Language (DDL) and Data Manipulation

Language (DML) commands using SQL.

Procedures :

DDL (Data Definition Language)

Commands used to define and modify database structure.

Examples:

 CREATE

 ALTER

 DROP

 TRUNCATE

DML (Data Manipulation Language):

Commands used to manipulate data in tables.

Examples:

 INSERT

 UPDATE

 DELETE

A. DDL Commands (Data Definition Language)

Step 1: Create a Table

Create a table named Students with fields for student details.

CREATE TABLE Students (

 StudentID INT PRIMARY KEY,

 Name VARCHAR(50),

 Age INT,

 Department VARCHAR(30)

);

Step 2: Alter the Table

Add a new column Email to the Students table.

ALTER TABLE Students

ADD Email VARCHAR(50);

Step 3: Truncate the Table

Remove all records from the Students table, keeping its structure.

TRUNCATE TABLE Students;

Step 4: Drop the Table

Permanently delete the Students table from the database.

DROP TABLE Students;

B. DML Commands (Data Manipulation Language)

Step 5: Insert Data into the Table

Insert a record for a student into the Students table.

INSERT INTO Students (StudentID, Name, Age, Department, Email)

VALUES (1, 'John Doe', 20, 'CSE', 'john@example.com');

Step 6: Retrieve Data from the Table

Display all records from the Students table.

SELECT * FROM Students;

Step 7: Update a Record

Update the email address of the student with StudentID = 1.

UPDATE Students

SET Email = 'john.doe@college.com'

WHERE StudentID = 1;

Step 8: Delete a Record

Delete the record of the student with StudentID = 1.

DELETE FROM Students

WHERE StudentID = 1;

OUTPUT:

RESULT:

Thus the SQL commands for managing database schema (DDL) and manipulating

records (DML) are executed successfully.

Exercise 5

Implement DCL,TCL Commands

AIM :

To understand and implement DCL and TCL commands using SQL for managing access

permissions and transactions using SQL.

Procedures :

DCL – Data Control Language

Used to control access to data in a database.

Common commands:

 GRANT – gives privileges to users

 REVOKE – removes privileges from users

TCL – Transaction Control Language

Used to manage transactions in a database.

Common commands:

 COMMIT – saves the transaction permanently

 ROLLBACK – undoes changes since the last COMMIT

 SAVEPOINT – creates a point within a transaction for partial rollbacks

 A. DCL Commands

Step 1: Create a User (syntax may vary depending on RDBMS)

CREATE USER 'student1'@'localhost' IDENTIFIED BY 'password123';

Step 2: Grant Privileges

Grant permissions to the user to access a specific table.

GRANT SELECT, INSERT, UPDATE ON empdb.Employees TO 'student1'@'localhost';

Step 3: Revoke Privileges

Revoke the granted permissions.

REVOKE INSERT, UPDATE ON empdb.Employees FROM 'student1'@'localhost';

B. TCL Commands

Step 4: Start a Transaction (optional depending on system)

START TRANSACTION;

Step 5: Insert Data into a Table

Insert a new employee (example assumes Employees table exists).

INSERT INTO Employees (EmployeeID, FirstName, LastName, Email, Phone,

HireDate, Salary, DepartmentID)

VALUES (104, 'David', 'Lee', 'david.lee@example.com', '555-1111', '2025-08-

03', 62000, 2);

Step 6: Create a Savepoint

Create a rollback point.

SAVEPOINT sp1;

Step 7: Update a Record

Update the inserted employee's salary.

UPDATE Employees

SET Salary = 65000

WHERE EmployeeID = 104;

Step 8: Rollback to Savepoint

Undo the salary update, but keep the insert.

ROLLBACK TO sp1;

Step 9: Commit the Transaction

Make all changes permanent.

COMMIT;

Step 10: Full Rollback Example

If no COMMIT is done, you can rollback all changes:

ROLLBACK;

OUTPUT:

RESULT:

Thus, DCL and TCL commands were executed successfully for managing database

security and transaction control.

Exercise 6

Implement SQL sub queries, Joins and Clauses

AIM :

To implement SQL subqueries, various types of joins, and commonly used clauses for

effective data retrieval and management.

Procedures :

Subqueries:

A subquery is a query nested inside another query.

Types:

 Single-row subquery

 Multi-row subquery

 Correlated subquery

 Joins:

Used to retrieve data from multiple tables based on a related column.

Types:

 INNER JOIN

 LEFT JOIN (or LEFT OUTER JOIN)

 RIGHT JOIN (or RIGHT OUTER JOIN)

 FULL JOIN (may not be supported in all DBMSs)
 SELF JOIN

Clauses:

SQL clauses filter, sort, and group query results. Common clauses include:

 WHERE
 GROUP BY
 HAVING
 ORDER BY

 LIMIT

Tables for Practice:

Departments

CREATE TABLE Departments (

 DepartmentID INT PRIMARY KEY,

 DepartmentName VARCHAR(100)

);

Employees

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Salary DECIMAL(10, 2),

 DepartmentID INT,

 FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID)

);

INSERT INTO Departments

INSERT INTO Departments (DepartmentID, DepartmentName)

VALUES

 (1, 'HR'),

 (2, 'Finance'),

 (3, 'IT'),

 (4, 'Marketing');

INSERT INTO Employees

INSERT INTO Employees (EmployeeID, FirstName, LastName, Salary, DepartmentID)

VALUES

 (101, 'Alice', 'Johnson', 55000.00, 1),

 (102, 'Bob', 'Smith', 72000.00, 3),

 (103, 'Charlie', 'Brown', 48000.00, 2),

 (104, 'David', 'Lee', 65000.00, 3),

 (105, 'Eva', 'Green', 51000.00, 4),

 (106, 'Frank', 'Miller', 75000.00, 2);

 A. Subqueries

Step 1: Subquery in WHERE clause

Get employees earning more than the average salary.

SELECT * FROM Employees

WHERE Salary > (SELECT AVG(Salary) FROM Employees);

Step 2: Subquery in FROM clause

Get department-wise average salary using a subquery.

SELECT DepartmentID, AvgSalary

FROM (SELECT DepartmentID, AVG(Salary) AS AvgSalary FROM Employees GROUP BY

DepartmentID) AS DeptAvg;

B. Joins

Step 3: INNER JOIN

Get employee details with their department names.

SELECT e.EmployeeID, e.FirstName, e.LastName, d.DepartmentName

FROM Employees e

INNER JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 4: LEFT JOIN

Show all employees and their departments, even if the department is NULL.

SELECT e.EmployeeID, e.FirstName, d.DepartmentName

FROM Employees e

LEFT JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 5: RIGHT JOIN

Show all departments and employees, even if no employees are in a department.

SELECT e.EmployeeID, e.FirstName, d.DepartmentName

FROM Employees e

RIGHT JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 6: SELF JOIN

Find pairs of employees from the same department.

SELECT e1.FirstName AS Emp1, e2.FirstName AS Emp2, e1.DepartmentID

FROM Employees e1

JOIN Employees e2 ON e1.DepartmentID = e2.DepartmentID AND e1.EmployeeID <>

e2.EmployeeID;

C. SQL Clauses

Step 7: WHERE Clause

Get employees from the IT department.

SELECT * FROM Employees

WHERE DepartmentID = 3;

Step 8: GROUP BY Clause

Find total salary paid in each department.

SELECT DepartmentID, SUM(Salary) AS TotalSalary

FROM Employees

GROUP BY DepartmentID;

Step 9: HAVING Clause

Departments where total salary exceeds 1,00,000.

SELECT DepartmentID, SUM(Salary) AS TotalSalary

FROM Employees

GROUP BY DepartmentID

HAVING SUM(Salary) > 100000;

Step 10: ORDER BY Clause

Display all employees in descending order of salary.

SELECT * FROM Employees

ORDER BY Salary DESC;

Step 11: LIMIT Clause (MySQL)

Fetch top 3 highest paid employees.

SELECT * FROM Employees

ORDER BY Salary DESC

LIMIT 3;

OUTPUT:

RESULT:

Thus, SQL subqueries, joins, and clauses were implemented successfully using structured

SQL queries.

Exercise 4

Implementing DDL and DML Commands

AIM :

To understand and implement Data Definition Language (DDL) and Data Manipulation

Language (DML) commands using SQL.

Procedures :

DDL (Data Definition Language)

Commands used to define and modify database structure.

Examples:

 CREATE

 ALTER

 DROP

 TRUNCATE

DML (Data Manipulation Language):

Commands used to manipulate data in tables.

Examples:

 INSERT

 UPDATE

 DELETE

A. DDL Commands (Data Definition Language)

Step 1: Create a Table

Create a table named Students with fields for student details.

CREATE TABLE Students (

 StudentID INT PRIMARY KEY,

 Name VARCHAR(50),

 Age INT,

 Department VARCHAR(30)

);

Step 2: Alter the Table

Add a new column Email to the Students table.

ALTER TABLE Students

ADD Email VARCHAR(50);

Step 3: Truncate the Table

Remove all records from the Students table, keeping its structure.

TRUNCATE TABLE Students;

Step 4: Drop the Table

Permanently delete the Students table from the database.

DROP TABLE Students;

B. DML Commands (Data Manipulation Language)

Step 5: Insert Data into the Table

Insert a record for a student into the Students table.

INSERT INTO Students (StudentID, Name, Age, Department, Email)

VALUES (1, 'John Doe', 20, 'CSE', 'john@example.com');

Step 6: Retrieve Data from the Table

Display all records from the Students table.

SELECT * FROM Students;

Step 7: Update a Record

Update the email address of the student with StudentID = 1.

UPDATE Students

SET Email = 'john.doe@college.com'

WHERE StudentID = 1;

Step 8: Delete a Record

Delete the record of the student with StudentID = 1.

DELETE FROM Students

WHERE StudentID = 1;

OUTPUT:

RESULT:

Thus the SQL commands for managing database schema (DDL) and manipulating

records (DML) are executed successfully.

Exercise 5

Implement DCL,TCL Commands

AIM :

To understand and implement DCL and TCL commands using SQL for managing access

permissions and transactions using SQL.

Procedures :

DCL – Data Control Language

Used to control access to data in a database.

Common commands:

 GRANT – gives privileges to users

 REVOKE – removes privileges from users

TCL – Transaction Control Language

Used to manage transactions in a database.

Common commands:

 COMMIT – saves the transaction permanently

 ROLLBACK – undoes changes since the last COMMIT

 SAVEPOINT – creates a point within a transaction for partial rollbacks

 A. DCL Commands

Step 1: Create a User (syntax may vary depending on RDBMS)

CREATE USER 'student1'@'localhost' IDENTIFIED BY 'password123';

Step 2: Grant Privileges

Grant permissions to the user to access a specific table.

GRANT SELECT, INSERT, UPDATE ON empdb.Employees TO 'student1'@'localhost';

Step 3: Revoke Privileges

Revoke the granted permissions.

REVOKE INSERT, UPDATE ON empdb.Employees FROM 'student1'@'localhost';

B. TCL Commands

Step 4: Start a Transaction (optional depending on system)

START TRANSACTION;

Step 5: Insert Data into a Table

Insert a new employee (example assumes Employees table exists).

INSERT INTO Employees (EmployeeID, FirstName, LastName, Email, Phone,

HireDate, Salary, DepartmentID)

VALUES (104, 'David', 'Lee', 'david.lee@example.com', '555-1111', '2025-08-

03', 62000, 2);

Step 6: Create a Savepoint

Create a rollback point.

SAVEPOINT sp1;

Step 7: Update a Record

Update the inserted employee's salary.

UPDATE Employees

SET Salary = 65000

WHERE EmployeeID = 104;

Step 8: Rollback to Savepoint

Undo the salary update, but keep the insert.

ROLLBACK TO sp1;

Step 9: Commit the Transaction

Make all changes permanent.

COMMIT;

Step 10: Full Rollback Example

If no COMMIT is done, you can rollback all changes:

ROLLBACK;

OUTPUT:

RESULT:

Thus, DCL and TCL commands were executed successfully for managing database

security and transaction control.

Exercise 6

Implement SQL sub queries, Joins and Clauses

AIM :

To implement SQL subqueries, various types of joins, and commonly used clauses for

effective data retrieval and management.

Procedures :

Subqueries:

A subquery is a query nested inside another query.

Types:

 Single-row subquery

 Multi-row subquery

 Correlated subquery

 Joins:

Used to retrieve data from multiple tables based on a related column.

Types:

 INNER JOIN

 LEFT JOIN (or LEFT OUTER JOIN)

 RIGHT JOIN (or RIGHT OUTER JOIN)

 FULL JOIN (may not be supported in all DBMSs)
 SELF JOIN

Clauses:

SQL clauses filter, sort, and group query results. Common clauses include:

 WHERE
 GROUP BY
 HAVING
 ORDER BY

 LIMIT

Tables for Practice:

Departments

CREATE TABLE Departments (

 DepartmentID INT PRIMARY KEY,

 DepartmentName VARCHAR(100)

);

Employees

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Salary DECIMAL(10, 2),

 DepartmentID INT,

 FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID)

);

INSERT INTO Departments

INSERT INTO Departments (DepartmentID, DepartmentName)

VALUES

 (1, 'HR'),

 (2, 'Finance'),

 (3, 'IT'),

 (4, 'Marketing');

INSERT INTO Employees

INSERT INTO Employees (EmployeeID, FirstName, LastName, Salary, DepartmentID)

VALUES

 (101, 'Alice', 'Johnson', 55000.00, 1),

 (102, 'Bob', 'Smith', 72000.00, 3),

 (103, 'Charlie', 'Brown', 48000.00, 2),

 (104, 'David', 'Lee', 65000.00, 3),

 (105, 'Eva', 'Green', 51000.00, 4),

 (106, 'Frank', 'Miller', 75000.00, 2);

 A. Subqueries

Step 1: Subquery in WHERE clause

Get employees earning more than the average salary.

SELECT * FROM Employees

WHERE Salary > (SELECT AVG(Salary) FROM Employees);

Step 2: Subquery in FROM clause

Get department-wise average salary using a subquery.

SELECT DepartmentID, AvgSalary

FROM (SELECT DepartmentID, AVG(Salary) AS AvgSalary FROM Employees GROUP BY

DepartmentID) AS DeptAvg;

B. Joins

Step 3: INNER JOIN

Get employee details with their department names.

SELECT e.EmployeeID, e.FirstName, e.LastName, d.DepartmentName

FROM Employees e

INNER JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 4: LEFT JOIN

Show all employees and their departments, even if the department is NULL.

SELECT e.EmployeeID, e.FirstName, d.DepartmentName

FROM Employees e

LEFT JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 5: RIGHT JOIN

Show all departments and employees, even if no employees are in a department.

SELECT e.EmployeeID, e.FirstName, d.DepartmentName

FROM Employees e

RIGHT JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Step 6: SELF JOIN

Find pairs of employees from the same department.

SELECT e1.FirstName AS Emp1, e2.FirstName AS Emp2, e1.DepartmentID

FROM Employees e1

JOIN Employees e2 ON e1.DepartmentID = e2.DepartmentID AND e1.EmployeeID <>

e2.EmployeeID;

C. SQL Clauses

Step 7: WHERE Clause

Get employees from the IT department.

SELECT * FROM Employees

WHERE DepartmentID = 3;

Step 8: GROUP BY Clause

Find total salary paid in each department.

SELECT DepartmentID, SUM(Salary) AS TotalSalary

FROM Employees

GROUP BY DepartmentID;

Step 9: HAVING Clause

Departments where total salary exceeds 1,00,000.

SELECT DepartmentID, SUM(Salary) AS TotalSalary

FROM Employees

GROUP BY DepartmentID

HAVING SUM(Salary) > 100000;

Step 10: ORDER BY Clause

Display all employees in descending order of salary.

SELECT * FROM Employees

ORDER BY Salary DESC;

Step 11: LIMIT Clause (MySQL)

Fetch top 3 highest paid employees.

SELECT * FROM Employees

ORDER BY Salary DESC

LIMIT 3;

OUTPUT:

RESULT:

Thus, SQL subqueries, joins, and clauses were implemented successfully using structured

SQL queries.

	Exercise 1
	Create a database schema for a university Database.
	AIM :
	The aim of this database schema is to store and manage information about students, professors, courses, and enrollments at a university.
	Procedures :
	Step 2: Use Database.
	Step 3: Create Tables of Departments, Students, Faculty, Courses, Classes, Enrollment, Attendance, Grades.
	Step 4: Inserting Values into Tables.
	Exercise 2
	Create employee database with key constraints
	AIM : (1)
	The aim of this database schema is to store and manage information about employees with key constraints using SQL queries.
	Procedures : (1)
	Step 2: Use Database. (1)
	Step 3: Create Tables of Departments and Employees
	STEP 4: Insert values into Department and Employees
	STEP 5: Display Tables
	STEP 6 : Alter Tables
	Exercise 3
	Create ER Model University Database
	AIM : (2)
	The aim is to create University database ER model using MYSQL workbench.
	Procedures : (2)
	Step 1. Open MySQL Workbench
	Step 2. Add Tables for Each Entity
	Step 3. Define Columns and Keys for Each Table
	Step 4. Create Foreign Key Relationships
	Step 5. Use Relationship Tools to Connect Tables Visually
	Step 6. Save and Export
	Thus ER model for University database is created successfully using MYSQL workbench.
	Step 1: Create a Table
	Step 2: Alter the Table
	Step 3: Truncate the Table
	Step 4: Drop the Table
	Step 5: Insert Data into the Table
	Step 6: Retrieve Data from the Table
	Step 7: Update a Record
	Step 8: Delete a Record
	Step 1: Create a User (syntax may vary depending on RDBMS)
	Step 2: Grant Privileges
	Step 3: Revoke Privileges
	Step 4: Start a Transaction (optional depending on system)
	Step 5: Insert Data into a Table
	Step 6: Create a Savepoint
	Step 7: Update a Record (1)
	Step 8: Rollback to Savepoint
	Step 9: Commit the Transaction
	Step 10: Full Rollback Example
	Subqueries:
	Clauses:
	Tables for Practice:
	Step 1: Subquery in WHERE clause
	Step 2: Subquery in FROM clause
	Step 3: INNER JOIN
	Step 4: LEFT JOIN
	Step 5: RIGHT JOIN
	Step 6: SELF JOIN
	Step 7: WHERE Clause
	Step 8: GROUP BY Clause
	Step 9: HAVING Clause
	Step 10: ORDER BY Clause
	Step 11: LIMIT Clause (MySQL)
	Step 1: Create a Table
	Step 2: Alter the Table
	Step 3: Truncate the Table
	Step 4: Drop the Table
	Step 5: Insert Data into the Table
	Step 6: Retrieve Data from the Table
	Step 7: Update a Record
	Step 8: Delete a Record
	Step 1: Create a User (syntax may vary depending on RDBMS)
	Step 2: Grant Privileges
	Step 3: Revoke Privileges
	Step 4: Start a Transaction (optional depending on system)
	Step 5: Insert Data into a Table
	Step 6: Create a Savepoint
	Step 7: Update a Record (1)
	Step 8: Rollback to Savepoint
	Step 9: Commit the Transaction
	Step 10: Full Rollback Example
	Subqueries:
	Clauses:
	Tables for Practice:
	Step 1: Subquery in WHERE clause
	Step 2: Subquery in FROM clause
	Step 3: INNER JOIN
	Step 4: LEFT JOIN
	Step 5: RIGHT JOIN
	Step 6: SELF JOIN
	Step 7: WHERE Clause
	Step 8: GROUP BY Clause
	Step 9: HAVING Clause
	Step 10: ORDER BY Clause
	Step 11: LIMIT Clause (MySQL)

